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Abstract
A complex deformation of the Newtonian equations of motion of the classical
gravitational many-body problem is introduced, namely a many-body problem
that features a parameter � and that reduces, when this parameter vanishes,
to the standard equations of motion of Newtonian gravitation for an arbitrary
number of pointlike bodies with arbitrary masses; and it is shown that when this
parameter is instead positive, � > 0, there is an open set of (complex) initial
data such that all the (complex) motions originating from it are completely
periodic with period T = 2π/�, and that the (infinite) measure of this set is a
finite (nonvanishing) fraction of the measure of the entire set of initial data.

PACS numbers: 45.50.Jf, 02.30.Hq, 02.30.Ik

1. Introduction and main result

Recently a ‘trick’—amounting essentially to a convenient change of variables—has been
introduced [1], and it has been exploited to demonstrate the periodic character of solutions of
known (integrable and nonintegrable) many-body problems [2–10], as well as to introduce a
(complex) deformation of evolution equations (integrable and nonintegrable ODEs and PDEs)
that causes the deformed equations to possess many completely periodic solutions [11–14].
The purpose and scope of this paper is to pursue the applicability of this approach to the
classical (‘doubly Newtonian’) equations of motion of the many-body gravitational problem,
by presenting a result that is backed here by a complete proof but has already been (almost)
stated in [8] (see in particular exercise 5.6.5-20 in this book; but beware of a misprint in the
left-hand side of equation (5.6.5-41a): the term 2/p should instead read p/2).
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Consider the many-body problem characterized by the following equations of motion:

�̈rn + i��̇rn + 2�2�rn =
N∑

m=1,m �=n

Mm(�rm − �rn)r−3
mn, rmn = [(�rm − �rn) · (�rm − �rn)]1/2

. (1.1)

Here (and throughout this paper) superposed arrows identify three-vectors, say �r ≡ (x, y, z),
the subscript n runs over the integers from 1 toN (withN an arbitrary positive integer, N � 2)
so that the three-vectors �rn ≡ �rn(t) identify the positions of the N moving pointlike bodies,
superposed dots denote differentiations with respect to the time variable t (which is hereafter
assumed to be real), say �̇rn ≡ �̇rn(t) ≡ d�rn (t)/ dt , the symbol i identifies the imaginary unit
(namely the square root of the negative unit, i2 = −1), � is a real constant (which, without
loss of generality, is hereafter assumed to be positive, � > 0), the quantities Mn are the masses
of the N moving bodies (which could even be complex numbers, without spoiling the validity
of the following results, see (2.18)) and the dots sandwiched between two three-vectors denote
the standard scalar product, so that, say, �r · �r = r2 = x2 + y2 + z2.

Clearly for � = 0 these equations of motion, (1.1), characterize the standard gravitational
N -body problem, with units chosen so that the gravitational constant equals unity. We consider
instead the case with positive �, � > 0, when, due to the second term in the left-hand side
of (1.1), the motion takes place in the complex, hence we assume hereafter that the three
components of the vector �rn are complex numbers. This fact, and the presence of the second
and third additional terms in the left-hand side of (1.1), entail that the many-body problem (1.1)
we consider differs substantially from the standard gravitational many-body problem, although
clearly it can be seen as a complex deformation of it due to the presence of the parameter �.
Indeed, as the result we are about to state indicates, one might (or perhaps should) rather
view the many-body problem (1.1) as describing N three-dimensional complex oscillators
interacting nonlinearly via two-body forces ‘of gravitational type’, or equivalently 2N three-
dimensional real oscillators interacting likewise, as implied by the following reformulation
of (1.1), which is clearly obtained by introducing the real and imaginary parts of the complex
three-vectors �rn = �un + i�vn:

�̈un − � �̇vn + 2�2 �un = Re

{ N∑
m=1,m �=n

Mm[�umn + i�vmn][u2
nm − v2

mn + 2i�umn · �vmn]
−3/2

}
, (1.2a)

�̈vn + � �̇un + 2�2�vn = Im

{ N∑
m=1,m �=n

Mm[�umn + i�vmn][u2
nm − v2

mn + 2i�umn · �vmn]
−3/2

}
, (1.2b)

where of course �un ≡ �un(t) and �vn ≡ �vn(t) are real three-vectors and we use the short-hand
notation �umn ≡ �um − �un, �vmn ≡ �vm − �vn.

Be this as it may, we are now ready to state our result.

Proposition. If the initial data for the problem (1.1) satisfy appropriate inequalities, the
corresponding trajectories are completely periodic with period

T = 2π/�, (1.3a)

�rn(t + T ) = �rn(t). (1.3b)

The ‘appropriate inequalities’ mentioned in this proposition are explicitly exhibited below
and in more detail in the following section 2, where a complete proof of this proposition is
provided. Now we outline the basic idea that underlies this proof, by recalling the ‘trick’
mentioned above and by thereby making the validity of this proposition rather evident.
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We set

�rn(t) = exp(−2i�t) �ρn(τ ), (1.4a)

τ = [exp(3i�t) − 1]/(3i�). (1.4b)

It is then plain that the equations of motion (1.1) take the new form

�ρ ′′
n =

N∑
m=1,m �=n

Mm( �ρm − �ρn)ρ−3
mn, ρmn = [( �ρm − �ρn) · ( �ρm − �ρn)]1/2

, (1.5)

that only differs from (1.1) because of the absence of the ‘�-terms’ in the left-hand sides
of (1.5), and of course because the superposed dots are now replaced by appended primes,
which obviously signify differentiations with respect to the new independent variable τ ,
�ρ ′
n(τ ) ≡ d �ρn (τ )/ dτ .

The following relations among the initial data for (1.1) and (1.5) are moreover evident:

�rn(0) = �ρn(0), (1.6a)

�̇rn(0) = �ρ ′
n(0) − 2i� �ρn(0). (1.6b)

As we mentioned above, we always consider the evolution of the system (1.1) when the
‘physical’ time variable t is real. It is plain from (1.4b) that the corresponding evolution of the
complex timelike variable τ , as t evolves starting from t = 0 onward, is to travel round and
round over the circle C̃ the diameter of which lies on the upper imaginary axis in the complex
τ -plane, from τ = 0 (corresponding to t = 0 mod(T /3)) to τ = 2i/(3�) (corresponding to
t = T/6 mod(T /3)). Hence whenever a solution �ρn(τ ) of (1.5) is holomorphic (or, for that
matter, just meromorphic), as a function of the complex variable τ , in the (closed) circular disc
C enclosed by the circle C̃, the corresponding solution �rn(t) of (1.1) is completely periodic in
t with period T (see (1.4) and (1.3)).

On the other hand the general theorem that guarantees existence, uniqueness and
analyticity of the solutions of (systems of) analytic ODEs in the neighbourhood of their initial
data entails that there exists a circular disc D centred, in the complex τ -plane, at τ = 0, inside
which the solution �ρn(τ ) of (1.5) is holomorphic. The corresponding solution �rn(t) of (1.1) is
therefore guaranteed to be completely periodic in t with period T provided the radius τc of the
disc D is larger than the diameter of the disc C,

τc > 2/(3�), (1.7)

so that the disc D includes the disc C, implying that the solution �ρn(τ ) of (1.5) is holomorphic
in the closed disc C.

Clearly the value of the radius τc depends, for a system of ODEs of type (1.5), essentially
on two aspects of the initial data: the magnitude of the initial rates of change �ρ ′

n(0) of the
dependent variables, and the overall initial magnitude of the ‘forces’ that constitute the right-
hand sides of the ODEs (1.5). Hence for the system (1.5) the following positive parameters
characterizing the initial data play a key role: a parameter V that provides an upper bound for
the first type of data,

V = max
n=1,...,N;j=1,2,3

|ρ ′
n,j (0)|, (1.8)

and three parameters r, R,Q (the role of which is detailed below) that bound the initial
‘interparticle distances’,

r = min
n,m=1,...,N,n �=m;j=1,2,3

|Re [ρn,j (0) − ρm,j (0)]|, (1.9a)

R = max
n,m=1,...,N,n �=m;j=1,2,3

|Re [ρn,j (0) − ρm,j (0)]|, (1.9b)

Q = max
n,m=1,...,N,n �=m;j=1,2,3

|Im [ρn,j (0) − ρm,j (0)]|, (1.9c)
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and are therefore instrumental in obtaining an upper bound for the ‘forces’. Note that in these
two definitions, (1.8) and (1.9), and always below, the ‘modulus’ symbol, |z|, denotes the
modulus of the complex number z (not the modulus of a vector), while of course the subscript
j in (1.8) and (1.9), and always below, identifies the three components of the relevant three-
vector. (Of course the definitions (1.9a), (1.9b) entail the inequality R � (N − 1)r , which
however will play no role in the following; also note that the requirement that r be positive,
r > 0, is not automatically entailed by its definition, but rather by the following developments,
see (1.11b).)

It stands to reason that the radius τc of the disc D associated with a solution �ρn(τ ) of (1.5)
can be made arbitrarily large—and in particular consistent with the inequality (1.7)—by
requiring that the initial data that determine this solution be characterized by a not too large
value of V (see (1.8)) and by sufficiently large (and appropriately ranked) values of the three
quantities r, R,Q (see below). Hence, for all such initial data, the fact that the solution �ρn(τ )
of (1.5) is holomorphic in D entails that it is also holomorphic in C (which is then included
in D), and this entails that the corresponding solution �rn(t) of (1.1) (see (1.4)) is completely
periodic with period T (see (1.3)). Hence all the solutions of (1.1) that emerge from initial
data �rn(0), �̇rn(0) that correspond, via (1.6), to such initial data �ρn(0), �ρ ′

n(0) (that guarantee
the validity of (1.7)) yield completely periodic solutions of (1.1), and it will be immediately
clear that these data—that are characterized by the required validity of certain inequalities
(see below)—are a set the measure of which constitutes a finite (nonvanishing) fraction of the
entire universe of initial data for problem (1.5) as well as (1.1).

In fact the following conditions on the parameters V, r, R,Q characterizing the initial
data, see (1.9), are sufficient to guarantee validity of the proposition stated above. Set

V = V̄ ε−q, (1.10a)

r = r̄ε−p, R = R̄ε−p, Q = Q̄ε−p, (1.10b)

where ε is a small parameter and V̄ , r̄, R̄, Q̄ are independent of ε, so that the two real exponents
p, q characterize the magnitude of the parameters V, r, R,Q. Then, as proven in the following
section 2, provided

r̄ > Q̄ (1.11a)

namely

r > Q, (1.11b)

the two simple conditions

p > 1/2, q < p, (1.12)

are sufficient to guarantee that, for any arbitrarily assigned (up to (1.11a)) values of the positive
constants V̄ , r̄, R̄, Q̄ and �, there is a finite (nonvanishing) value εc (depending of course
on these parameters, and on the parameter M , see (2.18)) such that, for 0 < ε < εc ,
the inequalities (1.9) with (1.10) guarantee validity of the inequality (1.7), and hence of the
assertion (see (1.3)) made in the above proposition.

Note that, when q, in addition to p, is chosen to be positive (as permitted by (1.12)), the
initial data consistent with these requirements can be arbitrarily large, hence the set of data
�ρn(0), �ρ ′

n(0) satisfying these restrictions (see (1.10) and (1.9)) has a measure that constitutes
a finite (nonvanishing) fraction of the entire universe of such initial data; and clearly the same
assertion holds for the set of initial data �rn(0), �̇rn(0), related via (1.6) to �ρn(0), �ρ ′

n(0), which
thereby guarantee validity of the assertion (see (1.3)) made in the above proposition. Here and
above the measure we refer to is of course any reasonable one associated with the (complex)
initial data �ρn(0), �ρ ′

n(0) or, equivalently via (1.6), �rn(0), �̇rn(0).
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This concludes this introductory section, in which we have stated, and made quite plausible
or perhaps even obvious, the main result of this paper, as formulated in the above proposition.
A detailed proof is provided in the following section 2, and some final remarks are in section 3.

2. Proof

Our treatment here is patterned after section 3 of [9] (to the extent allowed by the three-
dimensional character of the problem treated herein, which entails significant complications,
see below). We rely on the standard theorem guaranteeing the existence, uniqueness and
analyticity of the solution of the initial-value problem for systems of analytic ODEs (see for
instance [15]). It is therefore convenient to reformulate the equations of motion (1.5) so that
they conform to the notation of [15]. Hence we set

wn,j (τ ) = ρn,j (τ ) − ρn,j (0), n = 1, . . . , N, j = 1, 2, 3, (2.1a)

wN+n,j (τ ) = ϑ[ρ ′
n,j (τ ) − ρ ′

n,j (0)], n = 1, . . . , N, j = 1, 2, 3, (2.1b)

where ϑ is a positive rescaling constant, ϑ > 0, the value of which will be chosen at our
convenience later, while we trust the rest of the notation to be self-evident (the subscript j
identifies of course the three components of a three-vector). Thereby our system (1.5) of N
second-order three-vector ODEs (equivalent to a system of 3N second-order scalar ODEs)
becomes the following (standard) system of 6N first-order ODEs:

w′
l,j = fl,j (w), l = 1, . . . , 2N, j = 1, 2, 3 (2.2)

with

fn,j (w) = ρ ′
n,j (0) + wN+n,j /ϑ, n = 1, . . . , N, j = 1, 2, 3, (2.3a)

fN+n,j (w) = ϑ

N∑
m=1,m �=n

Mm[ρm,j (0) − ρn,j (0) + wm,j − wn,j ]S−3/2
nm ,

n = 1, . . . , N, j = 1, 2, 3, (2.3b)

where

Snm ≡ Snm(w) =
3∑

k=1

[ρm,k(0) − ρn,k(0) + wm,k − wn,k]2. (2.4)

In (2.2), (2.3), (2.4) and below we use the short-hand notation w to denote the (6N)-vector the
components of which are the 6N quantities wl,j , see (2.1).

Note that the definition (2.1) also entails that the new dependent variables all vanish
initially, wn,j (0) = wN+n,j (0) = 0 (consistent with the notation of [15]).

The standard result [15] then provides the following lower bound for the radius τc of
the circular disc D, centred at the origin τ = 0 in the complex τ -plane, within which the
solutions wn,j (τ ) of (2.2) with (2.3), and hence also (see (2.1a)) the solutions ρn,j (τ ) of (1.5),
are holomorphic:

τc > W/[(6N + 1)F ] (2.5)

(this formula coincides, up to trivial notational changes, with the last equation of section 12.21
of [15], with the assignments m = 6N and a = ∞, the first of which is justified by the fact
that (2.2) features 6N ODEs and the second of which is justified by the autonomous character
of our equations of motion). The two positive quantities W and F in this equation, (2.5),
are defined as follows. The quantity W is required to guarantee that the 6N quantities fl,j
(see (2.3)) are all holomorphic when there hold the 6N inequalities

|wl,j | � W, l = 1, . . . , 2N, j = 1, 2, 3. (2.6)
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The quantity F ≡ F(W) is the upper bound of the moduli of the (complex) quantities fl,j
(see (2.2) and (2.3) with (2.4)) when the quantities wl,j satisfy the restriction (2.6),

F(W) = max
l=1,...,2N,j=1,2,3;|wl,j |<W

|fl,j (w)|; (2.7)

but of course the inequality (2.5) holds a fortiori if we overestimate F(W) (as we shall do, see
below).

Our first task now is to ascertain how W must be limited in order to be consistent with
its definition (see (2.6)). Clearly the only source of singularities of the 6N quantities fl,j ,
see (2.3), is the vanishing of the quantities Snm (see (2.4)). Hence a sufficient condition to
exclude the occurrence of such singularities is the requirement that the real part of Snm,

Re [Snm] =
3∑

k=1

{(Re [ρm,k − ρn,k + wm − wn])2 − (Im [ρm,k − ρn,k + wm − wn])2}, (2.8a)

Re [Snm] =
3∑

k=1

{(Re [ρm,k − ρn,k])2 − (Im [ρm,k − ρn,k])2

+ 2Re [wm − wn]Re [ρm,k − ρn,k] − 2Im [wm − wn]Im [ρm,k − ρn,k]

+ (Re [wm − wn])2 − (Im [wm − wn])2}, (2.8b)

be positive,

Re [Snm] > 0. (2.9)

(Here and below we take advantage of two obvious properties of a complex number: its
modulus can never be smaller than its real part, nor can it exceed the sum of its real and
imaginary parts.)

It is now plain, from (2.8b) and the definitions (1.9) and (2.6), that

Re [Snm] � S, (2.10)

with

S = 3{r2 − Q2 − 4W(R + Q) − 4W 2}, (2.11a)

S = 12(W+ − W)(W − W−), (2.11b)

where of course W± are the two roots of the second-degree polynomial in W in the right-hand
side of (2.11a),

W± = [(R + Q)/2]{ ± [1 + (r2 − Q2)/(R + Q)2]
1/2 − 1}. (2.12)

Hereafter we assume that (the initial data are such, see (1.9), that) there holds the
inequality (1.11b), which clearly entails that the quantities W± are real and satisfy the
inequalities

W− < 0 < W+. (2.13)

Hence any choice of the positive parameter W is hereafter allowed, provided it falls in the
interval

0 < W < W+, (2.14)

a restriction that clearly guarantees (see (2.11b)) that S is positive, S > 0, hence, via (2.10),
the validity of (2.9).

Our next task is to provide, for W in this interval (2.14), an upper bound to F(W), and it
is clear from (2.7) with (2.3) and (2.8, 10, 11), together with the definitions (1.9), that this is
provided by the inequality

F(W) � Fmax(W) (2.15)
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with

Fmax(W) = max [V + u,G(W)/u], (2.16)

where

G(W) = 12−3/2(N − 1)MW(R + Q + 2W)[(W+ − W)(W − W−)]−3/2, (2.17)

M = max
n=1,...,N

|Mn|. (2.18)

Here (merely for notational convenience) we have replaced, in the right-hand side of (2.16),
the arbitrary positive constant ϑ with the arbitrary positive constant u = W/ϑ .

The maximum in the right-hand side of (2.16) must be taken over the two arguments of
the Max function, hence at this point it is natural to choose the positive quantity u so that the
values of these two arguments coincide,

u = 2G(W){V + [V 2 + 4G(W)]1/2}−1
, (2.19)

entailing

Fmax(W) = {V 2 + V [V 2 + 4G(W)]1/2 + 2G(W)}{V + [V 2 + 4G(W)]1/2}−1. (2.20)

We are now ready to obtain, via (2.5), a lower bound for the radius τc of the disc D:

τc � τlo, (2.21)

τlo = (6N + 1)−1W {V + [V 2 + 4G(W)]1/2}{V 2 + V [V 2 + 4G(W)]
1/2

+ 2G(W)}−1 (2.22)

where G(W) is of course defined by (2.17) and we are still free to choose W in the
interval (2.14).

To show that τlo can be made arbitrarily large provided the parameters V, r, R,Q

characterizing the initial data (see (1.9)) are chosen appropriately we now set

W = W+(1 − ε), (2.23)

with W+ defined of course by (2.12) and ε a positive parameter which is hereafter supposed to
be small and which will also determine the size of the parameters V, r, R,Q according to the
assignments (1.10), with p, q two real parameters, the values of which are discussed below.
Then clearly, as ε → 0+ (and keeping hereafter, for simplicity, only the leading terms in this
limit)

W = W+ = W̄ε−p, (2.24a)

W̄ = [(R̄ + Q̄)/2]{[1 + (r̄2 − Q̄2)/(R̄ + Q̄)2]1/2 − 1}, (2.24b)

and from (2.17) and (2.24)

G = Ḡε(2p−3)/2, (2.25a)

Ḡ = 12−3/2(N − 1)MW̄−1/2(R̄ + Q̄)−1/2[1 + (r̄2 − Q̄2)/(R̄ + Q̄)2]−1/4, (2.25b)

hence, from (2.22),

τlo = (6N + 1)−1W̄ε−p{V̄ ε−q + [V̄ 2ε−2q + 4Ḡε(2p−3)/2]1/2}
{V̄ 2ε−2q + V̄ ε−q[V̄ 2ε−2q + 4Ḡε(2p−3)/2]1/2 + 2Ḡε(2p−3)/2}−1. (2.26)

Let us now consider first the assignment

q < (3 − 2p)/4. (2.27a)

Then

τlo = τ̄loε
−(3/2)(p−1/2), (2.27b)

τ̄lo = (6N + 1)−1W̄Ḡ−1/2, (2.27c)
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and we may therefore conclude that, as ε → 0+, τlo diverges provided

p > 1/2. (2.28)

Clearly the same conclusion is obtained, provided this inequality (2.28) holds, if

q = (3 − 2p)/4, (2.29a)

except that in this case

τlo = τ̃loε
−(3/2)(p−1/2), (2.29b)

τ̃lo = (6N + 1)−1W̄ {V̄ + [V̄ 2 + 4Ḡ]1/2}{V̄ 2 + V̄ [V̄ 2 + 4Ḡ]1/2 + 2Ḡ}−1. (2.29c)

The same conclusion is also obtained if

q > (3 − 2p)/4, (2.30a)

provided

q < p, (2.30b)

since in this case, as ε → 0+,

τlo = τ̂loε
q−p, (2.30c)

τ̂lo = (6N + 1)−1W̄/V̄ . (2.30d)

However, (2.30a) with (2.30b) clearly implies again (2.28), so in order for the main
conclusion to ensue (namely, divergence of τlo as ε → 0+) it is sufficient that (2.28) and (2.30b)
hold, these being the less stringent conditions one obtains with this rather simple treatment.

This concludes our proof of the proposition of section 1.

3. Outlook

As we emphasized in section 1, the finding reported in this paper provides no direct information
on the classical gravitational many-body problem, and its validity is fairly obvious—as is indeed
the case for all mathematically correct results after they have been thoroughly understood.
Yet, the system under consideration is a deformation of the realistic classical gravitational
many-body problem—indeed for just this reason we chose as setting for our presentation the
ordinary three-dimensional space in which we spend our (classical—who knows nowadays
about their quantum counterparts?) lives, while it would have been easy to work in a space
with an arbitrary number of dimensions, and also to treat more general interactions than the
gravitational one as is for instance done in exercise 5.6.5-20 of [8]. Moreover the result
we proved, obvious as it is once its origin has been well understood, does feature certain
aspects that might instead cause a priori disbelief about its validity: inasmuch as any model
that features such abundance of completely periodic trajectories, emerging from an open set
of initial data that constitute a finite (nonvanishing) fraction of the entire universe of initial
data, might well be conjectured to be integrable (rather than to feature just a region of phase
space in which it behaves as a—particularly simple—integrable system), and such a property
of integrability seems hardly consistent with a system that, as a deformation of the classical
many-body gravitational problem, might be expected to be even more general than the many-
body problem of Newtonian gravitation, itself a classic example of a nonintegrable system.

An interesting problem we plan to investigate further is the possible existence, for the
system (1.1), of other completely periodic motions, having a period that is an integer multiple
of T (see (1.3a)).

Another, more interesting but possibly untreatable, open problem to which we plan to
devote additional study is whether the approach employed in this paper could be used to
evince information on the behaviour of the gravitational many-body problem itself, rather than
only on its deformed and complexified version (1.1) with � > 0.
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